PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

IV B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH-2023 FINITE ELEMENT METHODS
(Common to AME \& ME Branch)
Time: 3 hours
Max. Marks: 60
Note: Question Paper consists of Two parts (Part-A and Part-B)
PART-A
Answer all the questions in Part-A ($\mathbf{5 X 2} \mathbf{= 1 0 M}$)

Q.No.		Questions	Marks	CO	KL
1.	a)	Write the basic equation used to solve a problem using Ritz method.	$[2 \mathrm{M}]$	1	1
	b)	What is meant by convergence in finite element method?	$[2 \mathrm{M}]$	2	1
	c)	Write the difference between bar and beam element.	$[2 \mathrm{M}]$	3	4
	d)	List out the weights used in guassian quadrature approach for three point formula.	$[2 \mathrm{M}]$	4	1
	e)	What is meant by dynamic analysis?	$[2 \mathrm{M}]$	5	1

PART-B
Answer One Question from each UNIT (5X10=50M)

Q.No.	Questions	Marks	CO	KL
UNIT-I				
2.	Explain different weighted residual methods	[10M]	1	2
OR				
3.	Derive the stress strain relations for plane strain problem	[10M]	1	4
UNIT-II				
4. a)	What are the various steps involved in Finite Element Method?	[5M]	2	1
b)	What are various types of elements used in Finite Element Method?	[5M]	2	1
OR				
5. a)	Explain about interpolation functions used in finite element method	[5M]	2	2
b)	Explain about treatment of different types of boundary conditions	[5M]	2	2
UNIT-III				
6.	For the beam shown in figure, determine the displacements and the slopes at the nodes, the forces in each element, and the reactions.	[10M]	3	5
OR				
7.	Derive the stiffness matrix for a two noded truss element	[10M]	3	4
UNIT-IV				
8.	Derive the shape functions for a four noded quadrilateral element in natural coordinate system.	[10M]	4	4
OR				

