Code No: P18MET18

HALL TICKET NUMBER

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS) IV B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH-2023 FINITE ELEMENT METHODS

(Common to AME & ME Branch)

Time: 3 hours

Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B) <u>PART-A</u>

Answer all the questions in Part-A (5X2=10M)

Q.No.		Questions	Marks	CO	KL
1.	a)	Write the basic equation used to solve a problem using Ritz method.	[2M]	1	1
	b)	What is meant by convergence in finite element method?	[2M]	2	1
	c)	Write the difference between bar and beam element.	[2M]	3	4
	d)	List out the weights used in guassian quadrature approach for three point	[2M]	4	1
		formula.			
	e)	What is meant by dynamic analysis?	[2M]	5	1

PART-B

Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL			
UNIT-I								
2.		Explain different weighted residual methods	[10M]	1	2			
OR								
3.		Derive the stress strain relations for plane strain problem	[10M]	1	4			
UNIT-II								
4.	a)	What are the various steps involved in Finite Element Method?	[5M]	2	1			
	b)	What are various types of elements used in Finite Element Method?	[5M]	2	1			
OR								
5.	a)	Explain about interpolation functions used in finite element method	[5M]	2	2			
	b)	Explain about treatment of different types of boundary conditions	[5M]	2	2			
		UNIT-III						
6.		For the beam shown in figure, determine the displacements and the slopes at the nodes, the forces in each element, and the reactions. $ \begin{bmatrix} 5 \text{ kN} \\ 2 \\ 6 \text{ m} \end{bmatrix} E = 210 \text{ GPa} \\ I = 4 \times 10^{-5} \text{ m}^4 $	[10M]	3	5			
	_	OR						
7.		Derive the stiffness matrix for a two noded truss element	[10M]	3	4			
UNIT-IV								
8.		Derive the shape functions for a four noded quadrilateral element in natural coordinate system.	[10M]	4	4			
	OR							

R18

			l				
9.		Determine the Cartesian coordinates of the point P having the natural coordinates (0.5,0.6) shown in Fig	[10M]	4	5		
UNIT-V							
10.	a)	What is meant by dynamic analysis? Explain in detail	[5M]	5	1		
	b)	Derive the mass matrix for one dimensional har element	[5M]	5	Δ		
	0)			5			
		OR					
11.		A composite wall consists of three materials A, B and C. The thermal conductivity and thickness of left-most material A are, 1.5 W/m ^o C and 250mm. The same for next material B are 0.08 W/m ^o C and 150mm. The values for right-most material C are 0.6 W/m ^o C and 150mm. The leftmost surface is subjected to convection with coefficient 75 W/m2- ^o C and surrounding temperature 1700 ^o C. The right side surface is at 80 ^o C. Compute the temperature distribution across the thickness of the wall. Consider 1m2 area.	[10M]	5	5		

R18
